Module Specification

1. Factual information								
Module title	M269: Algorithms, Data structures and	Level	2					
	Computability.							
Module	Dr. Radwan Abujassar	Credit value	30					
tutor								
Module type	Taught	Notional						
	-	learning hours	8					

2. Rationale for the module and its links with other modules

One of the basic pillars of advanced computing projects consists of the set of proper algorithms used to solve not only traditional but also unconventional IT problems. With the huge amount of data embedding the new data science, being skilled in setting proper data structure, managing and understanding computability techniques become a must nowadays. M269 is one of the most important modules for information technologies and computing related majors and tracks. The underlying concepts of this module are implemented using the python programming language.

3. Aims of the module This module aims to

• Provide the students with the required skills to possess the computational thinking. These skills start by proper understanding and analyzing the problems to be solved and end by providing computer programs that solve these problems.

 One of the important aspects of this module is to provide the students with the awareness of the limits of computation and the ability to decide which problems can and which cannot be solved efficiently with computers.

4. Pre-requisite modules or specified entry requirements This module is offered in 4 tracks: WD, CS, ITC and CwB. Studying this module requires a certain basic knowledge in prgramming and maths. Pre-requisites are TM105 & MT131

5. Intended learning outcomes	
A. Knowledge and understanding	Learning and teaching strategy
Upon completing this module, students will be	
able to:	25% face-to-face tutorial sessionsTMA work

5. Intended learning outcomes									
A. Knowledge and understanding	Learning and teaching strategy								
A1. Identify and define the sets, functions	 Module learning booklets and support material 								
and logic, and their application in the	 Support material Support material on LMS 								
design, implementation and analysis of									
computer-based systems.									
A2. Define and recognize Data structure									
and computational problematic.									

B. Cognitive skills	Learning and teaching strategy
 Upon completing this module, students will be able to: B1. Explain, construct and use algorithms and data structures to solve computational problems. B2. Describe and assess the difficulty of computational problems. B3. Analyse algorithms and computational problems making use of several informal proof techniques 	 25% face-to-face tutorial sessions TMA work Module learning booklets and support material Support material on LMS

C. Practical and professional skills	Learning and teaching strategy
Upon completing this module, students will be	
able to: C1 . Use the Python programming language	 25% face-to-face tutorial sessions TMA work
to implement algorithms.	 Module learning booklets and support material
C2.Write a short report which is based on	Support material on LMS
one or more sources and which has a	
well-argued conclusion.	

D Key transferable skills	Learning and teaching strategy
Upon completing this module, students will be	
able to:	
	25% face-to-face tutorial sessions

D Key transferable skills	Learning and teaching strategy
D1. Apply appropriate computational	TMA work
problem-solving techniques to a range	 Module learning booklets and support material
of problems;	Support material on LMS
D2. Apply computational thinking skills to	
solve problems across a range of	
application areas.	
D3. Discuss the questions 'What is	
computation?' and 'What are its	
limits?', and explain how the answers	
to these questions have important	
implications for the practical use of	
computer-based systems.	

6. Indicative	content.	
	Introduction	
	Introduction	
	What is computation?	
	Introducing Python	
Unit 1	Introduction	
	Come fly with Python	
	Basic Python	
	Why Python?	
	Computational thinking	
	From problems to programs	
	From problem to program	
	Getting the inputs and outputs	
	Getting the algorithm	
	Getting the ADT	
Linit 2	A taste of formal logic	
Unit 2	Iteration and logic	
	Pre- and post-conditions	
	Correctness and clarity	
	Getting data structures right	
	How do we know it is right?	
	Dividing and conquering	
	Sorting	
	What is sorting?	
	Naive sorting	
Linit 3	Bubble sort	
Offic 3	Selection sort	
	Insertion sort	
	Complexity of straight sorting algorithms	
	Inducing, reducing and recusing	

6. Indicative	content.	
	Induction Reduction and recursion Recursive sorting Sorting smart Dividing and conquering Trees and heaps Sorting – two final thoughts	
Unit 4	Searching Searching lists Searching for patterns Basic string search The quick search algorithm The Knuth–Morris–Pratt algorithm Other algorithms Maps Hashing and hash tables Search trees Binary search trees AVL trees	
Unit 5	Optimisation Optimisation and optimisation problems Graphs and greed Dynamic programming	
Unit 6	Sets, logic and databases Sets and propositional logic Predicate logic, or first order logic Database retrieval using simple queries The cardinality of infinite sets	
Unit 7	The limits of computation Computability Logic revisited Computational complexity Physics and computing	

7. Assessment strategy, assessment methods and their relative weightings					
TMA Work: 20%					
MTA: 30%					
Exam: 50%					

8. Mapping of assessment tasks to learning outcomes										
Assessments				Le	arning	Outcom	ies			
tasks	A1	A2	B1	B2	B3	C1	C2	D1	D2	D3

8. Mapping of assessment tasks to learning outcomes										
ТМА	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	
MTA	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark			\checkmark	
Final \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark										

9. Teaching staff associated with the module	
Tutor's name and contact details	Contact hours
Dr. Radwan Abujassar, r.abujassar@aou.edu.kw	

10. Key reading list				
Author	Year	Title	Publisher	Location
Module				
adopted from				
OU, UK.				
The Open	2015	Logic and the limit of computing	The open university	
University				
Magnus Lie	2010	Python	Apress	
Hetland		Algorithms:		
		Mastering		
		Algorithms		
		in the		
		Python		
		Language		
Allen Downey	2012	Think Python	Green Tea Press	

11. Other indicative text (e.g. websites)	
https://lms.arabou.edu.kw	